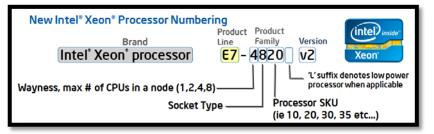


Intel[®] Xeon[®] Processor E7 Family Performance and Model Numbers

Intel® Xeon® Processor E7-8800/4800/2800 Product Families Characteristics and Impact to Performance



EXECUTIVE SUMMARY

Just like many automobile manufacturers and other companies that have multiple product lines within their product family, server processors have model numbers to help distinguish the differences in features and delineate value. As your business grows, so does demand for your products and / or services with additional customers, users, and transactions that strain your current IT infrastructure and back-end databases. The Intel[®] Xeon[®] brand helps customers

select the appropriate product line and family stack as their demand justifies it¹.

This paper focuses specifically on the Intel Xeon processor E7 family which is designed to be expandable and scalable for larger deployments of business- or mission-critical workloads such as on-line transaction processing, physical-to-virtual machine consolidation projects, business intelligence, customer relationship management (CRM), and enterprise resource planning (ERP) / line-of-business applications that generate revenue. The model numbers (see Figure 1) help differentiate the capabilities of the processors and in the case of the Intel Xeon processor E7 product family, the wayness or maximum number of processors (CPUs or sockets) in a node can be two, four, or eight (contrasted to the Intel Xeon processor E3 or E5 families, which support only one or two/four processors, respectively). Performance may scale as the number of processors installed (wayness) in a server is increased (up to 94% efficiency as published in this paper); but in a two-way server, regardless of the actual processor wayness *capability*, the throughput application performance would be expected to be the same.

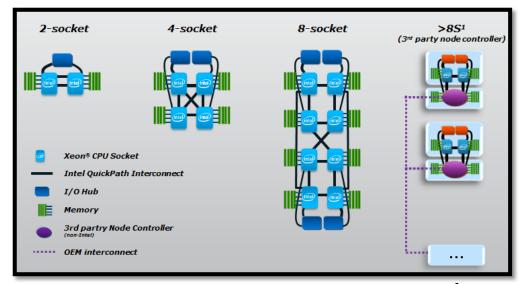
Figure 1 - 2012 Processor Numbering Example

MODEL NUMBERS AND SCALABILITY

For the Intel Xeon processor E7 family, processor models (also called SKUs) are available in three wayness configurations – two, four, or eight socket native support (no third party node controller required to connect the

sockets together). Within a given Intel Xeon processor E7-xxxx SKU, the difference in wayness is irrelevant if populated in only a two-socket node and corresponding performance differences are negligible. For example, the top-bin Intel Xeon processor E7-8870/E7-4870/E7-2870 all have the same socket type (8) and the same

processor SKU (70); which indicates same core frequency of 2.4 GHz, the same Intel[®] QuickPath Interconnect speed of 6.4 GT/s, the same last-level cache (LLC) of 30 MB, and the same number of cores at 10 per processor.


So the only difference is in the first product family number represents wayness (2, 4, or 8) capability indicating that the Intel Xeon processor E7-4xxx and E7-8xxx models can scale natively beyond just 2-sockets (see Figure 2 below). It is common IT practice to buy "headroom" by purchasing a larger server but only initially partitioning a portion of the processor sockets for today's level of requirements allowing for future compute power expansion as the number of users, transactions, or problem fidelity increases. Ideally, with perfect scaling, you can double the number of users, for example, when doubling the number of processor compute power (assuming storage, memory, and I/O are scaled as to not be the bottleneck). However, when any of these otherwise identical processors are populated in 2-sockets only though, performance throughput should be expected to be the same.

S-Spec Number	Stepping	CPUID	Core Frequency (GHz) / Intel® QuickPath Interconnect (GT/s) / Intel® SMI (GT/s)	Number of Cores	Cache Size (MB)	Series
SLC3E	A-2	000206F2h	2.4 GHz/6.4 GT/s/6.4 GT/s	10	30 MB	E7-8870
SLC3T	A-2	000206F2h	2.4 GHz/6.4 GT/s/6.4 GT/s	10	30 MB	E7-4870
SLC3U	A-2	000206F2h	2.4 GHz/6.4 GT/s/6.4 GT/s	10	30 MB	E7-2870

Figure 2 - Intel[®] Xeon[®] Processor E7-8800/4800/2800 Product Family Numbering²

PERFORMANCE IMPACT

For the purposes of demonstrating the impact of model numbers on performance, the top of the advanced capability levels of each product family is compared below (Intel Xeon processor E7-8870/4870/2870). Figure 3 below illustrates the options original equipment manufacturers (OEMs) have in designing an Intel Xeon processor E7 family-based server.

Looking at the first number in the Intel Xeon processor E7 family, -8xxx, -4xxx or -2xxx, which represents the number of processors natively supported in a server, the processors can scale to support the increased number of users, transactions or throughput as additional sockets are tested in performance benchmarks. The typical example of this can be found while using the SPECint*_rate_base2006

Figure 3 - Intel Xeon processor E7 family scalability to support 2- to 256-sockets³

benchmark that is fairly representative of typical integer-based, compute-intensive server applications to test the

number of users (typically matches the number of logical threads seen by the Operating System, OS) simultaneously running a problem on a given server. The performance scaling is calculated by dividing the resulting score from the maximum number of processors populated in one server by the score of the server with n-way processors populated in another server configuration. So from 2- to 4- to 8-socket-based servers, the perfect scaling would be four times, meaning that the number of users supported (or problems solved) in the 8-socket server is four times more than what a 2-socket server could support. The efficiency is measured by how close a scale-up server performs comparatively to that perfect scaling, which in this case is quite reasonable at up to 94% efficiency (see Figure 4 below).

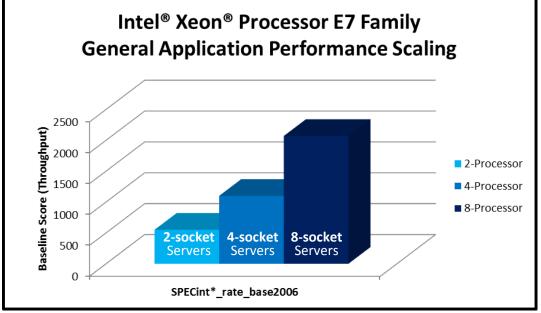
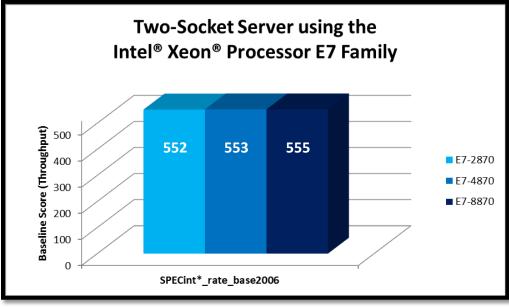


Figure 4 - Scaling of supported users on multi-processor servers⁴

The Intel Xeon processor E7-8870 can be populated in a 2-, 4-, or 8-socket server configuration. This is due to the Intel[®] QuickPath Interconnect (Intel[®] QPI) that allows the processors to share resources by allowing all of the components to access other components through the mainboard network. Similar to the Intel Xeon processor E7-8870, the E7-4870 model supports 2- or 4-socket server configurations; but on the Intel Xeon processor E7-2870, only 2-sockets can be populated in a server node (though multiple nodes can be joined together to form a larger single server image \geq 2S – see Figure 3 above).


There are no characteristics in each of the three processors noted above that differ, other than the wayness capability. All three processors operate in the same number of available cores per socket, core frequency, Intel[®] QPI speed, and cache structure (see Figure 2 above). Therefore, in a 2-socket server configuration, the performance delta between the three will only be typical run-to-run variation due to a number of factors including manufacturing variances that may affect the length of time the processors run above their marked frequency using Intel[®] TurboBoost Technology. SPEC* allows for up to 1.75% variation. This hypothesis was confirmed through testing using Intel internal labs and as seen in Figure 5 below as there is less than 0.5% difference in performance between the three processors when in the same two-socket server configuration (see Table 1 below for complete list of equivalent processor SKUs).

Wayness	Intel® Xeon® Processor E7-8800/4800/2800 Product Family Equivalent Performance							
2-Sockets Native	E7-2870 / E7-4870	E7-2860 / E7-4860	E7-2850 / E7-4850	E7-2830 / E7-4830				
	/ E7-8870	/ E7-8860	/ E7-8850	/ E7-8830				
4-Sockets Native	E7-4870 / E7-8870	E7-4860 / E7-8860	E7-4850 / E7-8850	E7-4830 / E7-8830				
8-Sockets Native	E7-8870	E7-8860	E7-8850	E7-8830				

Table 1 - Intel Xeon processor E7 family model numbers and wayness supported

CONCLUSION

Servers are very complex machines, especially in the "big iron" class where multi-processor configurations are the norm. The Intel Xeon processor E7 family is designed to support a multitude of shipping configurations and the model numbering schema is attempting to clarify the wayness and feature choices that customers have. In the

current generation Intel Xeon processor E7 family scalable platform situation, the performance throughput increases at up to 94% efficiency from 2- to 8sockets. However, in a twosocket server configuration, there is no appreciable difference in performance regardless of the processor SKU chosen - Intel Xeon processors E7-8870/4870/2870 and others shown in Table 1 above are equivalent.

Figure 5 - 2-socket Server Performance using Intel Xeon processors E7-8870/4870/2870⁵

NOTES / SOURCES

- 1. See <u>http://www.intel.com/content/www/us/en/processors/processor-numbers.html</u> for more information on the Intel Xeon processor numbering.
- 2. See <u>http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e7-8800-4800-2800-families-specification-update.pdf</u> for more information on Intel Xeon processor E7 family identification information.
- 3. Additional Configurations via OEM-specific scaling technologies (up to 256-sockets)
- 4. Comparison based on best published Intel Xeon processor E7 results in a 2-, 4-, and 8-socket configuration using the SPECint*_rate_base2006 integer throughput benchmark that is often used as a proxy for general server application performance.
 - a. 8-socket server: Hewlett-Packard ProLiant* DL980 G7 scoring 2070 baseline. Source: <u>http://www.spec.org/cpu2006/results/res2011q4/cpu2006-20110923-18595.html</u>
 - b. 4-socket server: Cisco UCS* C460 M2 scoring 1100 baseline. Source: <u>http://www.spec.org/cpu2006/results/res2012q1/cpu2006-20111223-19278.html</u>
 - c. 2-socket server: IBM System x* 3690 X5 scoring 550 baseline.
 Source: <u>http://www.spec.org/cpu2006/results/res2012q3/cpu2006-20120716-23707.html</u>
 - Comparison based on Intel internal testing on Intel Xeon processor E7 family using SPECint*_rate_base2006 benchmark baseline scores. System Configuration: Intel® C606 Chipset based reference platform (see <u>http://www.qsscit.com/en/01_product/02_detail.php?mid=27&sid=125&id=126&qs=50</u> for details) supporting two each Intel Xeon processors E7-8870, E7-4870, and E7-2870 populated in sockets 0 and 1 with 128 GB memory (32x 4 GB DR DDR3-1066 RDIMMs), Red Hat* Enterprise LINUX 6.2, Intel Compiler XE2012 (12.1) compiled binaries. Source: Intel internal TR#1326 October 2012. See Appendix for details.

APPENDIX

	Intel®	Xeon® Pro	ocessor E7-	2870			
	Base	Base	Base	Peak	Peak	Peak	
Benchmarks	Copies	Run Time	Rate	Copies	Run Time	Rate	
400.perlbench	40	923	423	*			
400.perlbench	40	926	422	S			
400.perlbench	40	921	424	S			
401.bzip2	40	1236	312	S			
401.bzip2	40	1235	313	*			
401.bzip2	40	1233	313	S			
403.gcc	40	750	429	*			
403.gcc	40	755	426	S			
403.gcc	40	747	431	S			
429.mcf	40	471	775	*			
429.mcf	40	472	774	S			
429.mcf	40	470	776	S			
445.gobmk	40		475	*			
445.gobmk	40		475				
445.gobmk	40		476				
456.hmmer	40		675				
456.hmmer	40		677				
456.hmmer	40						
458.sjeng	40		454				
458.sjeng	40						
458.sjeng	40		455				
462.libquantum	40		3360				
462.libquantum	40						
462.libquantum	40		3350				
464.h264ref	40						
464.h264ref	40						
464.h264ref	40		647				
471.omnetpp	40		313				
471.omnetpp	40		313				
471.omnetpp	40		313				
473.astar	40		313				
473.astar	40		320				
473.astar	40		320				
483.xalancbmk	40		577 579				
483.xalancbmk 483.xalancbmk	40		579				
	-						
			422	*			
400.perlbench	40		423				
401.bzip2	40						
403.gcc	40						
429.mcf	40		775				
445.gobmk	40						
456.hmmer	40						
458.sjeng	40						
462.libquantum	40		3350				
464.h264ref	40						
471.omnetpp	40						
473.astar	40						
483.xalancbmk	40	478		*			
SPECint(R)_rate_base2006			552				
SPECint_rate2006				Not Run			

	Inte	el® Xeon®	Processor	E7-4870
	Base	Base	Base	Peak Peak Peak
Benchmarks	Copies	Run Time	Rate	Copies Run Time Rate
400.perlbench	40	922	424	*
400.perlbench	40	924	423	S
400.perlbench	40	918	426	S
401.bzip2	40	1235	313	S
401.bzip2	40	1234	313	*
401.bzip2	40	1233	313	S
403.gcc	40	746	432	S
403.gcc	40	753	427	*
403.gcc	40	763	422	S
429.mcf	40	470		
429.mcf	40	472	774	S
429.mcf	40			
445.gobmk	40	883		
445.gobmk	40			
445.gobmk	40			
456.hmmer	40			
456.hmmer	40			
456.hmmer	40			
458.sjeng	40			
458.sjeng	40			
458.sjeng	40			
462.libquantum	40		3350	
462.libquantum	40	247	3360	
462.libquantum	40	247		
464.h264ref	40			
464.h264ref	40	1325		
		1358		
464.h264ref	40		647	
471.omnetpp	40	799		
471.omnetpp	40	799		
471.omnetpp	40	799		
473.astar	40	879		
473.astar	40		320	
473.astar	40			
483.xalancbmk	40			
483.xalancbmk	40			
483.xalancbmk	40	478	578	*
	======	=======	=======	
400.perlbench	40	-		
401.bzip2	40			
403.gcc	40			
429.mcf	40			
445.gobmk	40	883		
456.hmmer	40			
458.sjeng	40			
462.libquantum	40	247		
464.h264ref	40	1358	652	*
471.omnetpp	40	799	313	*
473.astar	40	877	320	*
483.xalancbmk	40	478	578	*
SPECint(R)_rate_base2006			553	
SPECint_rate2006				Not Run

	Intel	® Xeon® P	rocessor E	7-8870	
	Base	Base	Base	Peak Peak Pe	ak
Benchmarks	Copies	Run Time	Rate	Copies Run Time	Rate
400.perlbench	40	925	423	S	
400.perlbench	40	919	425	S	
400.perlbench	40	920	425	*	
401.bzip2	40	1233		S	
401.bzip2	40	1231			
401.bzip2	40	1232	313	*	
403.gcc	40	747	431	*	
403.gcc	40	747			
403.gcc	40				
429.mcf	40				
429.mcf	40				
429.mcf	40	471			
445.gobmk	40	880			
145.gobmk	40	882			
145.gobmk	40	884			
456.hmmer	40	554			
456.hmmer	40				
456.hmmer	40	555			
	40	1066			
458.sjeng	40	1066			
458.sjeng	40	1065			
158.sjeng					
462.libquantum	40	247	3350		
462.libquantum	40		3360		
462.libquantum	40				
464.h264ref	40	1314			
164.h264ref	40	1313			
164.h264ref	40	1335			
471.omnetpp	40	798			
471.omnetpp	40	798			
471.omnetpp	40	798			
473.astar	40	876			
473.astar	40	879			
473.astar	40	876			
483.xalancbmk	40				
483.xalancbmk	40	477			
483.xalancbmk	40	480	575	S	
===========	======	=======	=======	=======================================	
400.perlbench	40				
401.bzip2	40				
403.gcc	40	747			
429.mcf	40				
145.gobmk	40				
156.hmmer	40	554	674	*	
158.sjeng	40	1065	455	*	
162.libquantum	40	247	3350	*	
164.h264ref	40	1314	674	*	
171.omnetpp	40	798	313	*	
173.astar	40	876	321	*	
183.xalancbmk	40	477	578	*	
SPECint(R)_rate_base2006			555		
SPECint rate2006				Not Run	

Author

Frank Jensen is a Performance Engineer in Intel's Data Center Marketing Group

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Intel does not control or audit the design or implementation of third party benchmarks or Web sites referenced in this document. Intel encourages all of its customers to visit the referenced Web sites or others where similar performance benchmarks are reported and confirm whether the referenced benchmarks are accurate and reflect performance of servers available for purchase.

This paper is for informational purposes only. THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER. INCLUDING WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all liability, including liability for infringement of any proprietary rights relating to use of information in this specification. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted herein.

SPEC and the benchmark name SPECint are trademarks of the Standard Performance Evaluation Corporation. Benchmark results stated above reflect results published on http://www.spec.org as of October 22, 2012. For the latest SPECint_rate_base2006 benchmark results, visit <u>http://www.spec.org/cgi-bin/osgresults?conf=rint2006</u>.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Copyright[®] 2012 Intel Corporation. All rights reserved. Intel, the Intel logo, Intel[®], Xeon[®], and the Xeon[®] logos are trademarks or registered trademarks of Intel Corporation or its subsidiaries in other countries. * Other names and brands may be claimed as the property of others. All timeframes, dates and products are subject to change without further notification.

Printed in USA

1112/FJ/xxx/PDF

PI

Please Recycle

328306-001EN